Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 20258-20276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372911

RESUMO

The reuse of treated wastewater in agriculture is an important route of introducing a large number of organic contaminants into the agroecosystem. In this study, a modified QuEChERS-based approach was developed for rapid, simple, and simultaneous extraction of 48 organic wastewater-derived contaminants from soil and lettuce root. Twenty-two different (modification) scenarios of the known (or original) QuEChERS method have been tested, in order to obtain best and well-compromised recoveries for all target compounds for soil and roots. Finally, a common method was chosen for both matrices consisting of a single extraction step using EDTA-Mcllvaine buffer and the unbuffered Original QuEChERS salts. Method performance was accomplished by liquid chromatography coupled with high-resolution mass spectrometry on a QToF-MS system using two different acquisition modes, the ultra-fast high-resolution multiple reaction monitoring (MRMHR) mode and the innovative Sequential Window Acquisition of All Theoretical Fragment-Ion (SWATH) mode. Performance characterization was evaluated in terms of recovery, linearity, intra-day precision, method detection limits (MDLs), method quantification limits (MQLs), and matrix effect (ME). Recoveries in MRMHR mode ranged from 63 to 111% and 54 to 104% for lettuce root and soil, respectively, for most of compounds in MRMHR mode and from 56 to 121% and 54 to 104% for lettuce root and soil, respectively, for most of compounds in SWATH. Whereas, MQLs ranged from 0.03 to 0.92 ng g-1 in MRMHR and from 0.03 to 82 ng g-1 in SWATH for lettuce root, and from 0.02 to 0.44 ng g-1 in MRMHR and 0.02 to 0.14 ng g-1 in SWATH for soil. The method was then applied to follow the target compounds in soil and lettuce root, where the system lettuce-soil was irrigated with treated wastewater under real greenhouse conditions. Five and 17 compounds were detected in lettuce root and soil, respectively.


Assuntos
Espectrometria de Massas em Tandem , Águas Residuárias , Espectrometria de Massas em Tandem/métodos , Alface , Solo/química , Extração em Fase Sólida , Íons , Cromatografia Líquida de Alta Pressão
2.
Molecules ; 27(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630644

RESUMO

Different groups of organic micropollutants including pharmaceuticals and pesticides have emerged in the environment in the last years, resulting in a rise in environmental and human health risks. In order to face up and evaluate these risks, there is an increasing need to assess their occurrence in the environment. Therefore, many studies in the past couple of decades were focused on the improvements in organic micropollutants' extraction efficiency from the different environmental matrices, as well as their mass spectrometry detection parameters and acquisition modes. This paper presents different sampling methodologies and high-resolution mass spectrometry-based non-target screening workflows for the identification of pharmaceuticals, pesticides, and their transformation products in different kinds of water (domestic wastewater and river water). Identification confidence was increased including retention time prediction in the workflow. The applied methodology, using a passive sampling technique, allowed for the identification of 85 and 47 contaminants in the wastewater effluent and river water, respectively. Finally, contaminants' prioritization was performed through semi-quantification in grab samples as a fundamental step for monitoring schemes.


Assuntos
Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Humanos , Espectrometria de Massas/métodos , Praguicidas/análise , Preparações Farmacêuticas , Águas Residuárias/química , Água/análise , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 765: 142742, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33097266

RESUMO

A two years drip irrigation of lettuce and leek crops with treated municipal wastewater without and with spiking with fourteen wastewater relevant contaminants at 10 µg/L concentration level was conducted under greenhouse cultivation conditions to investigate their potential accumulation in soil and leaves and to assess human health related risks. Lettuce and leek crops were selected as a worse-case scenario since leafy green vegetable has a high potential for organic contaminants uptake. The results revealed limited accumulation of contaminants in soil and plant leaves, their concentration levels being in the range of 1-30 ng/g and 1-660 ng/g range in soil and leaves, respectively. This was likely related to abiotic and biotic transformation or simply binding processes in soil, which limited contaminants plant uptake. This assumption was underpinned by studies of the enantiomeric fractionation of chiral compounds (e.g. climbazole and metoprolol) in soil as pieces of evidence of biodegradation and by the identification of transformation products or metabolites in leaves by means of liquid chromatography - high resolution - mass spectrometry using a suspect screening workflow. The high bioconcentration factors were not limited to compounds with intermediate Dow (100 to 1000) such as carbamazepine but also observed for hydrophilic compounds such as clarithromycin, hydrochlorothiazide and the food additives acesulfame and sucralose. This result assumed that accumulation was not only driven by passive processes (e.g. lipoidal diffusion through lipid bilayer cell membranes or Casparian strip) but might be supported by carrier-mediated transporters. As a whole, this study confirmed earlier reports on the a de minimis human health risk related to the consumption of raw leafy green vegetable irrigated with domestic TWW containing organic contaminants residues.


Assuntos
Águas Residuárias , Irrigação Agrícola , Produtos Agrícolas , Humanos , Cebolas , Solo
4.
J Hazard Mater ; 403: 123881, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264951

RESUMO

Vegetable crops irrigated with treated wastewater can take up the environmentally persistent pharmaceuticals diclofenac and lamotrigine. This study aimed at quantifying the uptake and translocation of the two pharmaceuticals in lettuce (Lactuca sativa) as well as on the elucidation of the molecular and physiological changes triggered by them. Therefore, plants were cultivated in a phytochamber in hydroponic systems under controlled conditions and treated independently with diclofenac (20 µg L-1) and lamotrigine (60 µg L-1) for 48 h. A low translocation of lamotrigine but not of diclofenac or its metabolite 4'-hydroxydiclofenac to leaves was observed, which corresponded with the expression of stress related genes only in roots of diclofenac treated plants. We observed an oxidative burst in roots and leaves occurring around the same time point when lamotrigine was detected in leaves. This could be responsible for the significantly changed gene expression pattern in both tissues. Our results showed for the first time that pharmaceuticals like lamotrigine or diclofenac might act as signals or zeitgebers, affecting the circadian expression of stress related genes in lettuce possibly causing a repressed physiological status of the plant.


Assuntos
Preparações Farmacêuticas , Diclofenaco , Expressão Gênica , Lamotrigina , Folhas de Planta , Raízes de Plantas
5.
J Chromatogr A ; 1631: 461566, 2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33002708

RESUMO

Screening of a large number of chemicals of emerging concern is highly desirable for the control of crops irrigated with reclaimed water since it is considered an alternative water source of great value. This study describes a high resolution mass spectrometry approach for developing methods for quantification in lettuce leaves of 48 different wastewater-borne pollutants (including analgesics and anti-inflammatories, anti-hypertensives, antifungal agents, lipid regulators, psychiatric drugs and stimulants, ß-blockers, antibiotics, antimycotics, and sweeteners) frequently found in water resources. In this respect, a simple and fast QuEChERS-based method for the determination of contaminants in lettuce has been developed. During extraction, the use of formic acid was adopted to further improve the results of some problematic compounds (e.g., fenofibrate, furosemide, metronidazole, oxcarbazepine, sulfanilamide). High resolution multiple reaction monitoring (MRMHR) and SWATH acquisition were compared in term of accuracy, repeatability, sensitivity, linearity and matrix effect. Both methods provided similar recoveries between 80 and 120% in lettuce leaves, although sulfanilamide, ciprofloxacin, and sulfamethazine presenting values of 26.8, 27.8, and 28.4% in MRMHR and 25, 33.9, and 35% in SWATH, respectively. The effectiveness of a two-step cleanup on analyte recovery was also assessed and matrix effects were also taken into consideration during the method validation. The developed method allows the simultaneous quantitative analysis of 48 compounds (drug residues and metabolites) in lettuce leaves irrigated with treated wastewater for human consumption. Application of the present method to lettuce crops growth in controlled conditions showed the presence of 14 out 48 studied compounds with similar concentrations in both acquisition modes ranging from 3.3 and 1.3 ng g - 1 for climbazole (for MRMHR and SWATH, respectively) to 33.2 and 17.7 ng g - 1 for sulfamethazine. Drug residues such as carbamazepine (6.0 and 8.5 ng g - 1), and its metabolite carbamazepine epoxide (18.1 and 16.5 ng g - 1), frequently found in wastewater effluents, were also detected.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Íons , Espectrometria de Massas em Tandem , Águas Residuárias , Poluentes Químicos da Água/análise
6.
Water Res ; 185: 116293, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818734

RESUMO

The formation of N-nitroso-ciprofloxacin (CIP) was investigated both in wastewater treatment plants including nitrification/denitrification stages and in sludge slurry experiments under denitrifying conditions. The analysis of biological wastewater treatment plant effluents by Kendrick mass defect analysis and liquid chromatography - high resolution - mass spectrometry (LCHRMS) revealed the occurrence of N-nitroso-CIP and N-nitroso-hydrochlorothiazide at concentration levels of 34 ± 3 ng/L and 71 ± 6 ng/L, respectively. In laboratory experiments and dark conditions, produced N-nitroso-CIP concentrations reached a plateau during the course of biodegradation experiments. A mass balance was achieved after identification and quantification of several transformation products by LCHRMS. N-nitroso-CIP accounted for 14.3% of the initial CIP concentration (20 µg/L) and accumulated against time. The use of 4,5-diaminofluorescein diacetate and superoxide dismutase as scavengers for in situ production of nitric oxide and superoxide radical anion respectively, revealed that the mechanisms of formation of N-nitroso-CIP likely involved a nitrosation pathway through the formation of peroxynitrite and another one through codenitrification processes, even though the former one appeared to be prevalent. This work extended the possible sources of N-nitrosamines by including a formation pathway relying on nitric oxide reactivity with secondary amines under activated sludge treatment.


Assuntos
Ciprofloxacina , Óxido Nítrico , Nitratos , Óxidos de Nitrogênio , Águas Residuárias
7.
Environ Sci Pollut Res Int ; 27(18): 23331-23341, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32337674

RESUMO

Filamentous fungi Trichoderma have been able to efficiently degrade fluoroquinolone antibiotics namely ciprofloxacin (CIP) and ofloxacin (OFL) as well as the fungicide climbazole (CLB) that are persistent in conventional activated sludge processes. All targeted compounds were biotransformed by whole cells of Trichoderma spp., exactly T. harzanium and T. asperellum, and biosorption played a limited role in their elimination. However, contrasting results were obtained with the two strains. T. asperellum was more efficient against CIP, with a 81% degradation rate in 13 days of incubation, while T. harzianum was more efficient against CLB, with a 91% degradation rate. While in the case of OFL, both strains showed same efficiency with degradation rate around 40%. Adding a cytochrome P450 enzyme inhibitor hardly resulted in the modification of degradation kinetics supporting the implication of extracellular enzymes in chemical biotransformation. Transformation products were identified by liquid chromatography-high resolution-mass spectrometry and transformation pathways were proposed. Biotransformation of selected compounds included hydroxylation, oxidation/reduction and N- and O-dealkylation reactions, similarly to those reported with white rot fungi. CIP underwent transformations at the piperazinyl ring through oxidation and conjugation reactions, while OFL mainly underwent hydroxylation processes and CLB carbonyl reduction into alcohol. Consequently, Trichoderma spp. likely possess a machinery of unspecific enzymes, which makes their application in removal of pharmaceutical and personal care products attractive.


Assuntos
Fungicidas Industriais , Trichoderma , Antibacterianos , Fluoroquinolonas , Imidazóis
8.
Water Res ; 162: 22-29, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254883

RESUMO

This study investigated the transformation of secondary amine pharmaceuticals in UV-C/NO3- and in nitrate-rich wastewater at 254 nm by taking diclofenac, diphenylamine, mefenamic acid and furosemide as probe compounds. The degradation of targeted compounds were positively related to nitrate concentration and mainly caused by the formation of peroxynitrite and related reactive nitrogen species (e.g., nitrogen oxide and nitrogen dioxide radicals). Major transformation products were identified to provide fundamental understanding of the selective oxidation of secondary amine with reactive nitrogen species. UV photolysis, hydroxyl radical oxidation, nitration and nitrosation processes were found to be the most significant transformation pathways. In case of diphenylamine, for which most of the identified intermediates were available as standard, the relative significance of each transformation route could be established, highlighting for the first time the important role of N-nitrosation processes in UV/NO3- treatment followed by the decomposition of the resulting N-nitroso compounds by an alpha hydroxylation mechanism. This specific transformation pathway was of concern because it constitutes the molecular basis of N-nitrosamine carcinogenicity and may contribute to the increase in effluent genotoxicity under UV-C treatment in addition to the formation of nitrophenols. Hydrogenocarbonate ions at concentration values higher than 300 mg/L appeared to be a protective specie against nitrosation processes due to the formation of carbamate adducts but H2O2 in UV-C/H2O2 could be responsible for an exacerbation of the N-nitrosation pathway due to an addition source of hydroxyl radical in the system. The occurrence of major transformation products of diclofenac was confirmed in nitrate-rich wastewater under UV-C treatment at pilot-scale operation.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Aminas , Peróxido de Hidrogênio , Óxidos de Nitrogênio , Nitrosação , Oxirredução , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...